Short Communication

Photolysis of SO₂ at 123.6 nm in the presence of H_2^*

C. LALO and C. VERMEIL Equipe de Recherche du C.N.R.S., E.S.P.C.I., 10 rue Vauquelin, Paris V⁰ (France) (Received July 21, 1972)

The photodecomposition of SO_2 in the vacuum-u.v. range, has been studied at the krypton resonance line of 123.6 nm, sulfur trioxide formation being observed.

At this wavelength, the adsorption coefficient value of SO₂ is high (1000 cm⁻¹ atm⁻¹)¹ as can be seen in Fig. 1 which shows the adsorption spectrum of SO₂. The energy is high enough to dissociate the molecule SO₂ giving either S + O₂ fragments with the sulfur atom in the ¹S, ¹D or ³P states and the oxygen molecule in the b¹ Σ_g ⁺, a¹ Δ_g or X³ Σ_g ⁻ states, or SO + O fragments, the oxygen atom being in the ¹S, ¹D or ³P states and the radical SO in the b¹ Σ , a¹ Δ or X³ Σ states. The energy levels corresponding to the dissociation processes ($\Delta H_{SO-O} = 125$ kcal/mole) described above are shown in Fig. 1.

Experimental

The experimental apparatus is a mercury-free and greaseless flow system. The pressure can be varied between 5×10^{-1} and 760 Torr, the flow rate between 10 and 200 cm³ sec⁻¹ and hence the residence time between 1 and 10 sec.

The gases (SO₂) Matheson anhydrous grade 99.98%; H₂, Air Liquide "U" 99.995%) have been used first without purification. Some experiments performed with H₂ flowing through Pd powder and P₂O₅, and SO₂ through P₂O₅, gave identical results. The higher oxygen concentration in the flowing gases, coming from insufficient strength of the links is evaluated to be of the order of $1^{0}/_{00}$. The effluent gases are trapped at 77K. After the photolysis, the trap is heated, the gases are carried away by a flow of H₂ and SO₃ is collected in a 4:1 isopropanolwater mixture. The amount of SO₃ formed is determined as SO₄²⁻ using a barium perchlorate and thoron titrimetric method². The validity of the method has been carefully checked with blank runs.

^{*} Paper presented at the Tenth Informal Photochemistry Conference, Stillwater, Oklahoma, May 15-18, 1972.

Fig. 1. Absorption spectrum and thresholds for all possible modes of dissociation of SO₂.

The number of photons flowing into the cell at $\lambda = 123.6$ nm, the lamp being filled with krypton (4 Torr) excited by a microwave discharge and sealed by a lithium fluoride window, is 5×10^{14} photons sec⁻¹. This value has been measured by means of the photolysis of CO₂ taking $\Phi_{CO} = 1^3$.

Results

The photolysis of pure SO_2 , even at the lowest pressure and shortest residence time used, is immediatly followed by the appearance of a solid deposit upon the inner surface of the window. This deposit is essentially formed of solid sulfur since it has a yellow colour and is soluble in CS_2 .

This deposit is still formed when SO_2 is diluted in argon at a concentration of 3% or less, but is completely suppressed when diluted in hydrogen in the same concentration range. H_2 is transparent to 123.6 nm and 147.0 nm radiation.

J. Photochem., 1 (1972/73)

Fig. 2. SO₃ photochemical yields in a mixture of SO₂ and H₂ (Kr lamp, LiF window) as a function of the residence time in seconds.

Some experiments have been done when the photolysis of SO_2 is performed at 147.0 nm (xenon resonance line). If the concentration of SO_2 in hydrogen is as high as 10% without any fogging of the window, the same deposit as at 123.6 nm is obtained with higher concentration of SO_2 .

At 123.6 nm, one can make the following observations: for a given residence time and $p_{SO_*} = 0.4$ Torr, Φ_{SO_*} is constant for p_{H_*} varying from 15 to 200 Torr; Φ_{SO_*} is a decreasing function of the residence time (Fig. 2) extrapolated to flow rates $\rightarrow \infty$, Φ_{SO_*} is greater than unity at every pressure of SO₂ studied; for a given residence time, Φ_{SO_*} increases as p_{SO_*} increases: $\Phi_{SO_*} = 1$ ($p_{SO_*} = 0.05$ Torr and $\Phi_{SO_*} = 5$ ($p_{SO_*} = 2$ Torr).

As is shown later, these oxidation quantum yields are too high because they are only related to the photonic intensity at 123.6 nm.

The absorption spectrum of SO₂ revealing the existence of weak absorption bands at $\lambda < 390$ nm, a photolysis of this compound by the near u.v. lines emitted by the lamp must be considered. The near u.v. spectrum of the emission has been recorded and shows well defined bands between 250 nm and 450 nm with a strong one at 388 nm. Consequently some irradiations have been performed with the same krypton lamp but sealed by a quartz window. The SO₃ quantities obtained are half that with a LiF window, with the same pressure conditions. This is probably due to the low lying excited states (or state) of SO₂. When using a quartz window the yield of SO₃ is increased by increasing the partial pressure of H₂. No explanation can be proposed at this moment to account for this effect.

On the other hand, an explanation of the relation between quantum yields of SO₃ and residence time can be found in a secondary photolysis of this compound. To clarify this point, the absorption spectrum of SO₃ which is only known⁴ in the wavelength range $220 < \lambda < 300$, has been determined down to 145 nm at the

Fig. 3. Absorption spectrum of SO₃.

Laboratoire des Hautes Pressions (CNRS) at Bellevue with the kind assistance of Mlle M.C. Castex (Fig. 3).

This spectrum is composed of two continua, the onset of the second continum (190 nm or 150 kcal/mole) corresponding most probably to the dissociative process:

 $SO_3 + h\nu \rightarrow SO_2 (^3B) + O (^3P)$

(calculated threshold 156 kcal/mole).

The adsorption coefficient values of SO₃ at shorter wavelengths are of the same order of magnitude as those observed for SO₂. The secondary photolysis of SO₃ may lead to the low lying triplet state of SO₂.

Discussion

Sulfur formation by direct dissociation $S + O_2$

Sulfur atoms are formed in the photolysis; they are most likely directly produced in the ¹D state by a primary dissociative process, because $S(^{1}S)$ is quenched by H₂ to give $S(^{3}P)$ and $S(^{3}P)$ does not react with H₂. On the contrary, the reaction:

J. Photochem., 1 (1972/73)

 $S(^{1}D) + H_{2} \rightarrow SH(X^{2}\Pi) + H(^{1}S)$

is very efficient. $k = 2.5 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$ (5).

It can be noted that this process is less probable at 147 nm.

 SO_3 formation by the photodissociation of SO_2 The reaction:

 $SO_2 (X^1A_1) + O_2 \rightarrow SO_3 + O$

is energetically possible if and only if O_2 is in its $({}^{1}\Sigma_{g})$ state. On the other hand, if fragmentation in SO + O occurs, oxygen atoms are not expected to be formed in the O({}^{1}D) state since O({}^{1}D) is known to react very quickly with H₂ giving OH radicals, presumably less efficient than O({}^{1}D) for SO₃ formation. This will lead to a strong diminution of Φ_{so3} as the SO₂/H₂ ratio decreases by a factor of 10³.

 SO_3 formation below the SO_2 dissociation threshold The occurrence of the reaction:

 $SO_2 (^3B_1) + SO_2 \rightarrow SO_3 + SO_3$

has been postulated by Calvert and coworkers⁶. This reaction seems to offer a more probable mechanism to explain SO₃ formation at $\lambda > 250$ nm than the following reaction involving the first excited singlet state:

 $SO_2 (^1B_1 + O_2 (X^3\Sigma_g) \rightarrow SO_3 + O(^3P))$

since the O₂ concentration in the gas mixture is rather low.

Conclusion

At 123.6 nm, the primary process of photodecomposition leading to the $S + O_2$ fragments is important. Sulfur atom is probably produced in the ¹D state. At 147 nm, this process though less probable, is still occurring. The observation of high oxidation quantum yields can be explained by formation of low lying triplet state of SO₂ produced by the near u.v. Kr lines emitted by the lamp.

1 D. Golomb, K. Watanabe and F. F. Marmo, J. Chem. Phys., 36 (1962) 958.

- 2 R. S. Fielder and G. H. Morgan, Anal. Chim. Acta, 23 (1960) 538.
- 3 B. H. Mahan, J. Chem. Phys., 33 (1960) 959.
- 4 E. Fajans and C. F. Goodeve, Trans. Faraday Soc., 32 (1936) 511.
- 5 R. J. Donovan, L. J. Kirsch and D. Husain, Trans. Faraday Soc., 66 (1970) 774.
- 6 H. W. Sidebottom, C.C. Badcok, J. G. Calvert, G. W. Reinhart, B. R. Rabe and E. K. Damon, J. Am. Chem. Soc., 93 (1971) 2587.